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NON-TECHNICAL SUMMARY 
 
 Currency option traders use the Black-Scholes model in which the exchange 
rate follows a lognormal process.  However, it is found that the exchange rate may follow a 
mean-reverting process instead because of the following reasons: 
 

(i) In the long run the equilibrium exchange rate is determined by domestic 
money stock, interest rate level, and national income relative to the same 
quantities in the foreign economy.  However, in the short run it may deviate 
(or overshoot) from equilibrium, due to the sluggishness with which goods 
prices react to disturbances; 

 
(ii) Mean reversion could come about due to interventions in the foreign exchange 

market by the central banks; and 
 

 
(iii) Certain currencies are constrained to move inside target zones or under a 

managed-floating regime.  We might expect mean reversion of the exchange 
rate when the central banks engage in intramarginal intervention and market 
participants expect the exchange rate band to be fully credible and engage in 
stabilising speculation. 

 
Different dynamical processes of exchange rates raise uncertainty on the choice of a pricing 
model for currency options. 
 
 Option traders usually adopt dynamic hedging based on hedging parameters 
from option models to manage their option portfolios.1  If these hedging-related transactions 
are large relative to the underlying market, the hedging strategy could make significant 
demands on market liquidity and lead to higher market volatility.  As traders in general use 
Black-Scholes model for their currency option portfolios, they may respond to a perceived 
increase in the riskiness or even losses of their positions by paring back the size of those 
positions.  This may have the collective and unintended consequence of reducing market 
liquidity at the time when it is most needed and can destabilise markets.2  Clearly, uncertainty 
of the choice of an option model can lead to “model risk” that would worsen the market 
condition when there is an adverse shock on underlying asset values of options.  Therefore, 
the benefits of derivatives including options, both to individual institutions and to the 
financial system and the economy as a whole, could be diminished, and financial instability 
could result, if pricing models are not chosen and used properly. 

                                              
1 Dynamic hedging eliminates the risk of the option position by trading continuously the underlying asset of 

the option. 
2 See R. W. Ferguson (2002)’s speech on “Financial Engineering and Financial Stability” about dynamic 

hedging and herding behaviour.   
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 Barrier options have emerged as significant products for hedging and 
investment in the foreign exchange market since the late 1980s, largely in the over-the-
counter markets and for structuring financial products (e.g., currency-linked notes).  The 
estimated daily turnover of currency barrier option trading is about US$12 billion.3  Barrier 
options are path-dependent options which are usually structured as modifications of simple 
European puts and calls.  The existence of a European barrier option depends upon whether 
the underlying asset price has crossed a predetermined barrier prior to the exercise time.  For 
example, an up-and-out call pays off the usual European-call payoff at expiry, unless at any 
time before expiry the underlying asset has been traded at or higher than the barrier level. 
 
 This paper develops a barrier-option pricing model in which the exchange rate 
follows a mean-reverting lognormal process.  The corresponding closed-form solutions for 
the barrier options with time-dependent barriers are derived.  The numerical results show that 
barrier option values and the corresponding hedge parameters under the proposed model are 
different from those based on the Black-Scholes model.  For an up-and-out call, the mean-
reverting process keeps the exchange rate in a small range around the mean level.  When the 
mean level is below the barrier but above the strike price, the risk of the call to be knocked 
out is reduced and its option value is enhanced compared with the value under the Black-
Scholes model.  The parameters of the mean-reverting lognormal process therefore have a 
material impact on the valuation of currency barrier options and their hedge parameters. 
 

                                              
3 According to BIS Triennial Central Bank Survey of Foreign Exchange and Derivatives Market Activity in 

2004, the daily average turnover of option transactions in all currencies was US$117 billion.  D. Luenberger 
and R. Luenberger estimate that barrier option trading accounts for 10% of all traded options (see Pricing 
and hedging barrier options. Investment practice, Stanford University, EES-OR, Spring 1999). 
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1. INTRODUCTION 
 
 Barrier options are path-dependent options that are usually structured as 
modifications of simple European puts and calls.  The existence of a European barrier option 
depends upon whether the underlying asset price has crossed a predetermined barrier prior to 
the exercise time.  For example, an up-and-out call pays off the usual European-call payoff at 
expiry, unless at any time before expiry the underlying asset has been traded at or higher than 
the barrier level.  In this example, it is said to knock-out, becoming worthless.  On the other 
side of the picture are “in” options, which actually commence when the underlying price 
touches the barrier.  Barrier options are cheaper than regular European options because of 
these extinguishing and activating features.  Thus they are attractive to investors who are 
averse to paying high premiums.  In addition, sellers of barrier options may be able to limit 
their downside risk.  Barrier options have emerged as significant products for hedging and 
investment in foreign exchange, equity and commodity markets since the late 1980s, largely 
in the over-the-counter markets and for structuring financial products (e.g., structured notes 
linked to exchange rates).  The valuation of barrier options has been well covered in literature 
(see Hui, 1996, 1997; Kunitomo & Ikeda, 1992; Merton, 1973, Rich, 1994; Rubinstein & 
Reiner, 1991).  The dynamics of the underlying asset price in the valuation follow the 
lognormal process proposed by Black and Scholes (1973). 
 
 Regarding currency options, Garman and Kohlhagen (1983) adapt the Black-
Scholes model to develop the currency option valuation model.  However, it is not entirely 
satisfactory because the ordinary Black-Scholes model is for stock options and currencies are 
different from stocks in important respects.  In this connection, Sørensen (1997) and Ekvall, 
Jennergren, and Näslund (1997) present revised currency option pricing models in which the 
exchange rate follows a mean-reverting process (i.e., the logarithm of the exchange rate 
follows an Ornstein-Uhlenbeck process).  Sørensen (1997) proposes an equilibrium model 
that establishes a mean-reverting process for the exchange-rate dynamics through its effect on 
the dynamics in the domestic and foreign term structures of interest rates.  Ekvall et al. (1997) 
state several reasons why a mean-reverting process may be reasonable for exchange rates, 
even though these three reasons for mean reversion are not all in effect simultaneously.  First, 
in the long run the equilibrium exchange rate is determined by domestic money stock, 
interest-rate level, and national income relative to the same quantities in the foreign economy.  
However, in the short run it may deviate (or overshoot) from equilibrium, because of the 
sluggishness with which goods prices react to disturbances.  The resulting tendency of the 
exchange rate to return to an equilibrium can be thought of as mean reversion.  Such a sticky-
price monetary approach incorporating overshooting has been discussed by Dornbusch 
(1976). 
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 Second, mean reversion could come about because of interventions in the 
foreign-exchange market by the central banks.  Such interventions have been shown in many 
studies (see MacDonald, 1988).  An underlying feature of the interventions is that the 
authorities try to bring the exchange rate back to some normal or equilibrium level.  A natural 
way to model this is through a mean-reverting process for the exchange rate. 
 
 Third, certain currencies are constrained to move inside target zones or under a 
managed-floating regime.4  An important prediction of the theoretical literature on targeted 
exchange rates is that we might expect mean reversion of the exchange rate when the central 
banks engage in intramarginal intervention, and market participants expect the exchange-rate 
band to be fully credible and engage in stabilising speculation.  This mean-reverting property 
is widely referred to in the literature (see, for example, Anthony & MacDonald, 1998; 
Krugman, 1991; Rose & Svensson, 1994; Svensson, 1992, 1993).  Several recent studies have 
attempted to investigate this theoretical prediction empirically by examining the time-series 
properties of the currencies participating in the European monetary system (see, for example, 
Anthony & MacDonald, 1998, 1999; Ball & Roma, 1993, 1994; Kanas, 1998; Nieuwland, 
Verschoor, & Wolff, 1994; Rose & Svensson, 1994; Svensson, 1993).  Although their 
investigations had mixed results, the empirical results suggest that mean reversion is present. 
 
 Sørensen (1997) finds that the mean-reverting process has significant 
implications for the valuation of American currency options and optimal exercise strategies.  
As barrier options are path-dependent options like American options, implications of mean 
reversion for the valuation of currency barrier options could also be significant.  This paper 
develops a barrier option pricing model in which the exchange rate follows a mean-reverting 
lognormal (MRL) process to study the implications.  The corresponding closed-form 
solutions for the barrier options with time-dependent barriers are derived.  The pricing 
solutions are used to examine the effects of the MRL dynamics on the values and hedge 
parameters of European-style currency barrier options.  The results are compared with those 
generated from the Black-Scholes model.  As mean reversion could be present in foreign 
exchange dynamics and the use of currency barrier options for hedging foreign exchange 
exposures and structuring financial products is popular in the financial market, the findings in 
this paper could provide an analytical valuation framework for research in currency option 
pricing. 
 
 The model developed here may also be applicable for pricing barrier options 
on commodity products or other assets that follow a mean-reverting process. 
 

                                              
4 Examples are the currencies within the European Monetary System in 1990s, the Chinese renminbi, Hong 

Kong dollar, Singapore dollar and Malaysia ringgit. 
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 The paper is organized as follows.  The next section presents the currency 
barrier option pricing model under the MRL process and derives the corresponding option 
pricing formulas.  Next the effects of the MRL dynamics on the value of an up-and-out call 
and its hedge parameters are examined.  The results are compared with those under the 
Black-Scholes model and those of a regular call under the MRL process.  The final section 
summarises the findings. 
 
 
2. PRICING EUROPEAN BARRIER OPTIONS 
 
 In the MRL model, it is assumed that the exchange rate F (i.e., the domestic 
currency value of a unit of foreign currency) evolves according to the diffusion process 
specified as 
 [ ] FdWFdtFFdF σµκ ++−= )ln(ln 0  (1) 

where 0F  is the conditional mean exchange rate5, κ is the parameter measuring the speed of 

reversion to this mean, σ  is the volatility of the exchange rate, µ is the instantaneous return 
on F, and W  is a standard Wiener process so that dW  is normally distributed. 
 
 It is assumed that option prices depend on F as the only state variable.  By the 
usual arbitrage-free argument for currency options, the risk-adjusted expected excess returns 
of holding a currency option and holding its underlying currency must be identical (see, for 
example, Garman and Kohlhagen, 1983).  Applying Ito’s lemma, the partial-differential 
equation governing the option price P(F, t) with time-to-maturity of t based on the model is 
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5 F0 can be interpreted as the historical mean instantaneous exchange rate. 
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Sørensen (1997) and Ekvall et al. (1997) derive regular call and put pricing formulas in which 
the exchange rate follows a mean-reverting process.  The respective formulas are presented in 
Equations (A8) and (A14) in Appendix A.  The solution of Equation (5) with an up-and-out6 
option-payoff condition of ( )0,~ =txP  at option maturity is 

 ( ) ( ) ( )[ ] ( )∫ ∞−

− ==−−==
0 ' 0,'~0,';,0,';,',~ txPetxtxGtxtxGdxtxP xβ , (6) 

and the distribution function ( )0,';, xtxG  is given by 

 ( )
( )
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⎨
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−−= , (8) 
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1
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2 , (9) 

and β is a real number.  The payoff condition of an up-and-out call is ( )0,max KF −  if 

( )thF <  and 0 if ( )thF ≥ , where ( )th  is the moving barrier and K is the strike price at option 
maturity, such that 

( ) ( )0,max0,~ KHetxP x
call −== ,   ( )thF < , 

( ) 00,~ ==txPcall ,   ( )thF ≥ . (10) 

 
 Although closed-form solutions of fixed barrier options can be obtained under 
the Black-Scholes model, closed-form solutions of barrier options under the MRL model are 
obtained when the barrier is time dependent (i.e., moving with time).7  The trajectory of the 
moving barrier ( )th~  under the MRL model is  

   ( ) ( ) ( )tctcth 12
~ β−−= , 

or ( ) ( ) ( )[ ]{ }tctceHth t
12exp βκ +−= . (11) 

The option vanishes when  
( ) 0),(~~ == tthxPcall  (12) 

 
 The solution of a call is obtained by solving Equation (6) subject to the payoff 
condition (10) and the boundary condition (12).  After substituting back the variables, 
if ( )th is greater than the strike price K, the up-and-out call value is 

                                              
6 It is a regular option that ceases to exist if the underlying asset price reaches a certain level, the barrier.  

The barrier level is above the initial asset price. 
7 When the model parameters of barrier options are time dependent under the Black-Scholes model, there are 

no closed-form solutions (see Robert & Shortland, 1997 and Lo, Lee & Hui, 2003).  
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and N(.) is the cumulative normal distribution function. 
 
 To obtain the value of a fixed barrier (i.e., time-independent constant barrier) 
knock-out call, the parameter β can be adjusted such that the solution in Equation (13) 
provides the best approximation to the exact value of the fixed barrier call by using a simple 
method developed by Lo et al. (2003) for solving barrier option values with time-dependent 
model parameters.  The method is based upon simulating the fixed barrier as a slowly 
fluctuating barrier with a small oscillating amplitude by tuning the parameter β.  The upper 
and lower bounds (in closed form) provided by the method are also very tight for the exact 
fixed barrier option prices.  Because the bounds and estimates of the option price appear in 
closed form, they can be computed very efficiently.  Furthermore, the bounds can be 
improved systematically, and these improved bounds are again expressed (in closed form) in 
terms of the multivariate normal distribution functions. 8   In the next section, Figure 1 
illustrates the movements of the time-dependent barriers with different κ over option life. 
 

                                              
8 Rapisarda (2004) applied the results of Lo et al. (2003) to derive in an analytical fashion the approximate 

prices of various types of barrier options, for example forward start/early expiry barriers and window 
barriers. 
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 The derivations of option pricing formulas of a down-and-out call, up-and-out 
and down-and-out puts, and knock-in options are similar to that of the up-and-out call.  They 
are presented in Appendix A.9 
 
 The resemblance between the barrier option pricing formulas derived above 
and the corresponding formulas with the exchange rate under the Black-Scholes model is 
obvious.10  The random variable F~  specified in Equation (14) above is lognormal, resulting 
in similar formulas as those under the Black-Scholes model.  A 2~σ , which is the variance of 

the logarithm of the price F~ , replaces σ2 of the Black-Scholes model, which has the same 
meaning.  In other words, F~  is lognormal with [ ] tF /~~lnvar 2σ≡ where 

te
t

tc κ

κ
σσ 2

1 1
2

/2~ −−== . (19) 

 
 The resemblance is equivalent to the change of numeraire of F by F~ .  
Different magnitudes of the speed κ of reversion to this mean give some intuitive 
interpretations of F~ .  When the speed is very strong (i.e., 1>>κ ), F~  converges to 0F .  This 

means that the dynamical process of the exchange rate is almost deterministic, such that it 
will stick to 0F  with the effective volatility 0~ →σ .  Given an up-and-out call, its value 

converges to ( )[ ] rteKF −− 0,max 0  if 0F  is below the barrier ( )th  or 0 otherwise (i.e., the call 

is knocked out).  This illustrates that the presence of mean reversion makes the associated 
barrier option values very different from those in the Black-Scholes model.  The differences 
will be shown numerically in the following section.  Conversely, when the speed is very 
weak (i.e., 0→κ ), the dynamical process specified in the model converges to a lognormal 

process where FF ≅~  and σσ ≅~  such that the corresponding barrier option values are those 
based on the Black-Scholes model.  Equation (19) and the limits of σ~  with different κ show 
that 2~σ  is a decreasing function with κ and is less than 2σ .  The proof of 2~σ  being a 
decreasing function with κ is given in Appendix B. 
 
 
3. EFFECTS OF MRL PROCESS ON BARRIER OPTION VALUES AND HEDGE 

PARAMETERS 
 
 When dealers trade any derivative instruments, they often need to hedge their 
positions.  It is important to determine the hedge parameters of the derivative instruments.  
The following discussion is focused on the effects of the mean-reverting process on the 

                                              
9 Based upon the method of multiple images proposed by Lo et al. (2006) for valuation of double-barrier 

options with time-dependent parameters, a similar solution in Equation (6) for double-barrier options with 
mean reversion can be obtained. 

10 The derivation of the formulas under the Black-Scholes model can be found in Rubinstein and Reiner (1991) 
and Rich (1994). 
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values and hedge parameters including delta, gamma and vega (the effect of the volatility on 
the option value) of the barrier options.  Examples are using an up-and-out foreign currency 
call against domestic currency put option with exchange rate (F) = 100, strike price (K) = 100, 
barrier (H) = 115, time to maturity (t) = 6 months, foreign currency interest rate (d) = 5%, 
domestic currency interest rate (r) = 1%, volatility (σ) = 15%, and κ = 0.5, 1 and 2.  These 
values of κ are consistent with the estimates of κ (which are between 0.1 and 1.2) in Sørensen 
(1997) for the exchange rates of USD against GBP, DEM and JPY in the period from January 
1985 to December 1994.  Option values and hedge parameters under the MRL model based 
on Equation (13) are compared with those of an up-and-out call option under the Black-
Scholes model (i.e., κ = 0).  β is set to be ( ) ( )tctc 12 /−  for the initial value of the time-
dependent barrier h(t) such that the moving barrier is close to 115 over time.  Figure 1 
illustrates the movements of the barriers with different κ over option life.  It shows that the 
form of the barrier specified in Equation (11) ensures that the barrier converges to a fixed 
barrier when κ is reduced to zero.  The values of the hedge parameters are measured as finite 
difference approximations to their continuous time equivalents. 
 
 Figure 2 illustrates the option value variations with different mean exchange 
rates 0F  of the up-and-out calls.  When 0F  is below the strike price of 100, the barrier 

options under the MRL model, especially with high κ, cost less than the barrier option under 
the Black-Scholes model because the mean-reverting process will push the exchange rate 
below the strike over time and make the option become out-of-the-money.  Conversely, when 

0F  is higher than the strike price and will push the exchange rate towards higher values 

above the strike price during the option life, the option values under the MRL model increase 
with 0F  and are higher than those under the Black-Scholes model.  In the case of strong 

mean reversion (i.e., κ = 2), the option values under the MRL model decreases when 0F  is 

higher than 115, where risk of knock-out increases.  In the case of κ = 1, when 0F  is higher 

than 122, the variation of the option values with the underlying price is small.  It is because 
the risk of knock-out and the effect of in-the-moneyness due to the mean-reverting process 
cancel each other. 
 
 Compared with Figure 2, the option values are higher in Figure 3 where the 
option maturity is reduced to 3 months.  The shorter time to maturity reduces the probability 
of knock-out and thus enhances the values of the up-and-out calls.  The effects of the mean-
reverting process on the option values in Figure 2 are in general similar to those in Figure 3.  
In the case of strong mean reversion (i.e., κ = 2), the option values under the MRL model 
decrease when 0F  is higher than 128, which is above the barrier at 115.  This reflects that the 

effect of the mean reversion on option values weakens with the shorter option maturity. 
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 Dealers need accurate values for the delta and the delta behaviour in order to 
hedge their option portfolios effectively.  The delta variations with the exchange rate F in 
Figure 4 with 1000 =F  and the option maturity of 6 months show two typical features of the 

up-and-out calls.  First, their deltas are smaller than those of the regular option because of the 
cheaper knock-out option values.11  Second, the deltas become negative when the underlying 
price is close to the knock-out barrier.  This is due to the fact that the option values decrease 
when the underlying price moves higher and closer to the barrier.  Figure 4 also illustrates 
that the differences in deltas between the MRL and Black-Scholes models are in general not 
significant.  However, in Figure 5 where the mean exchange rate 0F  is set to be 110, the 

changes in the deltas with F are quite different among the option values under the MRL and 
Black-Scholes models.  For instance, when F is 104, the delta under the Black-Scholes model 
is zero, whereas the deltas under the MRL model with κ = 1 and 2 are about -0.05 and -0.11, 
respectively.  As the mean exchange rate 0F  is at 110, the mean-reverting process will push 

the exchange rate at 100 towards higher values and increases the risk of knock-out during the 
option life.  On the other hand, when the options are out-of-the-money, the deltas under the 
MRL model are higher in values because the mean-reverting process will push the exchange 
rate towards higher values without significantly increasing the risk of knock-out. 
 
 Figure 6 illustrates the variations of gamma with the exchange rate F with the 
options in Figure 5.  The gamma is defined as the change in delta per unit of the exchange 
rate.  Similar to the gamma under the Black-Scholes model, the gamma under the MRL 
model can be negative because of the negative slopes of the delta (see Figure 5) and has the 
lowest value at -0.025 where F = 106.  In terms of magnitude, the gamma under the MRL 
model is in general lower than the gamma under the Black-Scholes model, when F is above 
103.  This reflects that the mean-reverting process reduces the gamma risk of the up-and-out 
call by pushing the exchange rate to be around the mean exchange rate 0F at 110.  Compared 

with the Black-Scholes model, the delta under the MRL model is relatively stable for 
effective hedging due to the lower gamma. 
 
 The vega variations in Figure 7 are the percentage differences of the option 
value with 1% increase in the volatility.  The vega of the up-and-out calls turns from positive 
to negative when the exchange rate is close to the barrier.  It is a typical feature of an up-and-
out call, where the higher volatility makes the call easier to be knocked out near the barrier.  
Figure 7 shows that the vega risk in the MRL model is smaller than that in the Black-Scholes 
model, and the vega decreases with an increase in κ.  This observation is consistent with the 
analysis that the effective volatility σ~  in Equation (19) under the mean-reverting process is 
less than σ.  
 

                                              
11 The delta of a regular at-the-money call/put under the Black-Scholes model is about 0.5. 
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 Figure 8 compares the option value variations with different mean exchange 
rates 0F  of the up-and-out and regular calls.  Similar to the price relations between the barrier 

and regular options under the Black-Scholes model, the values of the up-and-out calls under 
the MRL model are less than those of the regular calls.  Because of no barrier stopping the 
increase in option values, the option values of the regular calls increase with the mean 
exchange rate, as 0F  will push the exchange rate towards higher values above the strike price, 

in particular in the case of strong mean reversion (i.e., κ = 2).  When 0F  is below 102, 

the regular calls with κ = 2 cost less than the regular calls with κ = 0.5 because the stronger 
mean-reverting process of κ = 2 will push the exchange rate below the strike over time and 
make the option become out-of-the-money.  This characteristic is similar to that of the up-
and-out calls. 
 
 In Figure 9, the delta variations with the exchange rate F of the regular calls 
with 1000 =F  show that their deltas are positive because there is no barrier to reduce the 

option values when the exchange rate increases.  As reflected in the option values in Figure 8, 
their deltas are higher than those of the up-and-out calls.  The deltas of the regular call under 
strong mean reversion (i.e., κ = 2) are smaller than those of the regular call with κ = 0.5 when 
the exchange rate is higher than 95 because the strong mean-reverting process will push the 
exchange rate towards the mean level of 100 and thus limits the up-side of the call. 
 
 
4. SUMMARY 
 
 This paper presented a model for valuing currency barrier options when the 
foreign exchange rate follows a MRL process.  The corresponding closed-form solutions for 
the option valuation with time-dependent barriers are derived.  The mean-reverting process 
keeps the exchange rate in a small range around the mean level over the option life and hence 
may limit the uncertainty of the option to be knocked out.  In the case of an up-and-out call, 
when the mean level is below the barrier but above the strike price, the risk of the call to be 
knocked out is reduced and its option value is enhanced compare with the value under the 
Black-Scholes model.  The numerical results show that the mean exchange rate (relative to 
the current exchange rate and barrier) and the speed of mean reversion have material impact 
on the valuation of currency barrier options and their hedge parameters. 
 
 As mean reversion could be present in foreign-exchange dynamics and the use 
of currency barrier options for hedging foreign exchange exposures and structuring financial 
products is popular in the financial market, the findings here could provide an analytical 
valuation framework for research in currency option pricing.  This framework can also be 
applied to other barrier options in which the underlying assets follow a mean-reverting 
process.  For example, commodity prices such as energy prices seem to exhibit some mean 
reversion.
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APPENDIX A 

 
 

Regarding a down-and-out call, the solution of Equation (2) at option maturity is 
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Because the value of a regular call equals the value of a knock-in call plus the value 
of a knock-out call, the value of an up-and-in call is given by  

 ( ) ( ) ( )tFPtFPtFP calluocallcallui ,,, −− −= ,  (A5) 

and the value of a down-and-in call is given by  
( ) ( ) ( )tFPtFPtFP calldocallcalldi ,,, −− −= .  (A6) 

The value of a regular call can be obtained by  

 ( ) ( ) ( )∫
∞

∞−
=== 0,'~0,';,',~ txPtxtxGdxtxP  (A7) 

with the call payoff condition and is equal to   
( ) ( ) ( ) ( )aNKecaNeFtFP rtrtcct
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−−+− −+= 1

exp 2, 21κ . (A8) 

 Barrier put values are derived similarly to barrier call values by using the payoff of 
( ) ( )0,max0,~ x

put HeKtxP −== , if ( )thF <  and zero if ( )thF ≥  in Equation (6) for an up-

and-out put and if ( )thF >  and 0 if ( )thF ≤  in Equation (A1) for a down-and-out put, 

respectively.  When ( ) Kth ≥ , an up-and-out put value is  
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If ( ) Kth < , an up-and-out put value is then 
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The down-and-out put value is 

 

( ) ( ) ( )
( ) ( )

( ) ( ) ( ) ( )[ ] ( )
( ) ( ) ( ) ( )[ ] ( )1

11
2

1

1
11

2
1

1

1

2~
~

~

2~
~

~

2~
2~,

1
2

1

1
2

1

cdNe
F
HFdNe

F
HK

ccNe
F
HFcNe

F
HK

cbNeFbNKe

caNeFaNKetFP

rtcrtc

rtcrtc

rtrt

rtrt
putdo

−−⎟
⎠
⎞

⎜
⎝
⎛+−⎟

⎠
⎞

⎜
⎝
⎛−

−−⎟
⎠
⎞

⎜
⎝
⎛−−⎟

⎠
⎞

⎜
⎝
⎛+

−−+−−

−−−−=

−−−−
−

−−
−

−−−−
−

−−
−

−−

−−
−

ββ
β

ββ
β

ββ
β

ββ
β

. (A11) 

Similar to knock-in calls, the value of an up-and-in put is given by  
 ( ) ( ) ( )tFPtFPtFP putuoputputui ,,, −− −= ,  (A12) 

and the value of a down-and-in put is given by  
( ) ( ) ( )tFPtFPtFP putdoputputdi ,,, −− −= .  (A13) 

The value of a regular put can be obtained by solving Equation (A7) with a put payoff 
condition, and is equal to 

( ) ( ) ( ) ( )1
exp 2, 21 caNeFaNKetFP rtcctrt

put −−−−= −+−− κ . (A14) 
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APPENDIX B 
 
 

As specified in Equation (19), σ~ is 
te
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σσ 21
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By putting ty κ2=  and squaring Equation (B1), it becomes 
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The derivative of 2~σ with respect to y is 
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It is noted that  
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By using Taylor expansion for ye , Equation (B4) becomes 
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From Equation (B5), because of the inequality in Equation (B5), 

 0
~ 2

<
dy

dσ . (B6) 

This shows that 2~σ is a decreasing function with y and thus with κ.   
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Figure 1.  Barrier level with time to maturity 
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Figure 2.  Variation of value of 6-month up-and-out calls with the mean exchange rate 
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Figure 3.  Variation of value of 3-month up-and-out calls with the mean exchange rate 
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Figure 4.  Variation of delta of 6-month up-and-out calls with the exchange rate, where 1000 =F  
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Figure 5.  Variation of delta of 6-month up-and-out calls with the exchange rate, where 1100 =F  
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Figure 6.  Variation of gamma of 6-month up-and-out calls with the exchange rate, where 1100 =F  
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Figure 7.  Variation of vega of 6-month up-and-out calls with the exchange rate, where 1100 =F  
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Figure 8.  Variation of value of 6-month up-and-out and regular calls with the mean exchange rate 
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Figure 9.  Variation of delta of 6-month up-and-out and regular calls with the exchange rate,  
 where 1000 =F  
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