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1. INTRODUCTION

Black and Scholes (1973) and Merton (1974) have been the pioneers in the
pricing of corporate bonds using a contingent-claims framework.1  In Black-Scholes-
Merton’s structural model, a firm’s market value of total assets is observable in principle.
Furthermore the capital structure is explicitly considered and default happens if the total
asset value is lower than the value of liabilities.  Default risk is therefore equivalent to a
European put option on the firm’s asset value.

To cope with the possibility of early default prior to maturity in the
structural model, Black and Cox (1976) assume a default-triggering level for the firm’s
asset value whereby default can occur at any time.  This trigger level is introduced by
considering a safety covenant that protects bondholders.  Longstaff and Schwartz (1995)
extend Black and Cox’s model to allow interest rates to follow the Ornstein-Uhlenbeck
process.  Default occurs when the firm’s asset value is below a constant default barrier.
The constant default barrier in the Longstaff and Schwartz model corresponds to the total
amount of debts issued by the firm, that is kept constant over time.  The model therefore
predicts that the expected liability-to-asset ratio (i.e. leverage ratio) will decline
exponentially over time.  The decline in the expected leverage ratio is however not
supported by empirical observations.

Briys and de Varenne (1997) develop a corporate bond pricing model which
is characterised by a default barrier following the dynamics of the risk-free interest rate.
As a result, the default barrier is assumed to grow together with the firm value over time
and the expected level of leverage is therefore kept constant.  This assumption may be
appropriate in case the firm is neither willing nor able to adjust its expected level of
leverage over time.  To model a more flexible default barrier, Hui et al. (2003) consider a
dynamic default barrier which incorporates scenarios of high default risk at time close to
bond maturity and the characteristics of both the Longstaff and Schwartz model and the
Briys and de Varenne model.

Empirical findings, including Marsh (1982), Jalilvand and Harris (1984),
Auerbach (1995) and Opler and Titman (1995), document that companies tend to
gradually adjust their capital structures toward a target level of leverage.  This means that
a firm adjusts its outstanding debts in response to changes in its firm value in order to
achieve a target level of leverage.  These findings call for the stationary-leverage-ratio
model for pricing corporate bonds, which has been studied by Collin-Dufresne and
Goldstein (2001).  Their structural model considers a mean-reverting liability that is tied to

                                                
1 The second approach is the reduced-form models in which default time is a stopping time of some given

hazard rate process and the payoff upon default is specified exogenously.  This approach has been
considered by Madan and Unal (1993), Jarrow, Lando, and Turnbull (1994), Jarrow and Turnbull
(1995), and Duffie and Singleton (1997).
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the interest rate dynamics.  The leverage ratio is defined as a ratio of the liability to the
asset value of a firm.  The model parameters in the Collin-Dufresne and Goldstein’s model
(hereafter referred to as the CG model) are all constant.  These assumptions make the
leverage ratio approach towards a constant target leverage ratio over time.  Collin-
Dufresne and Goldstein observe empirically that the long-term target ratio is close to the
average leverage ratio of BBB-rated firms.  They conclude that accounting for a bond
issuer’s ability to control its level of outstanding debt in the model has a significant impact
on credit spread predictions.  It helps reconcile some predictions of credit spreads with
empirical observations.  These include credit spreads that are larger for low-leverage firms
and less sensitive to changes in firm value, and upward sloping term structures of credit
spreads of speculative-grade bonds.

As the long-term target leverage ratio may be very different from the short-
term ratio, we expect the target leverage ratio should vary with time.  The objective of this
paper is to propose a theoretical hypothesis of the existence of a time-dependent target
leverage ratio.  To check the validity of this theoretical hypothesis, we extend the model
through incorporating a time-dependent target leverage ratio into the model (hereafter
referred to as the time-dependent model).  In the time-dependent model the firm’s liability
is assumed to be governed by a mean-reverting stochastic process whilst the firm value
follows a simple lognormal process.  The two stochastic variables of the firm value and
the liability are correlated.  By incorporating time-dependent model parameters in the
model, the target leverage ratio is thus time dependent.  The time-dependent target
leverage ratio can therefore reflect the movement of a firm’s initial target leverage ratio
toward a long-term target ratio over time which is the average leverage ratio of BBB-rated
firms.  When the volatility of the liability is set equal to zero and the model parameters are
constant, the time-dependent model converges to the CG model.

The time-dependent model assumes that default occurs when a firm’s
leverage ratio increases above a predefined default-triggering level.  The dynamics of the
short-term interest rate in the model is assumed to follow the Ornstein-Uhlenbeck process,
i.e. the Vasicek model (Vasicek, 1977).  It is correlated with the firm value and the firm
liability.  A closed-form solution is derived to compute model probabilities of default
(PDs) based on the time-dependent model.  Using market data for corporates with different
credit ratings, the PDs generated from the model show that the use of some simple, yet
non-trivial, scenarios about the time-dependence of the target leverage ratio (where the
initial target ratio decreases gradually toward the average leverage ratio of BBB-rated
firms over time) is capable of producing term structures of PDs that are consistent with the
empirically observed cumulative default rates of different ratings reported by Standard &
Poor’s (S&P’s) (2002).  On the other hand, the model PDs generated from the CG model
are substantially lower than the empirically default rates.  The numerical results provide
some evidences to support the hypothesis of the existence of a time-dependent target
leverage ratio.
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The scheme of this paper is as follows.  In the following section we discuss
the time-dependent model and derive the closed-form solution for estimating model PDs.
Numerical results of PDs calculated from the model based on market data are then
compared with the default rates reported by S&P’s and model PDs generated from the CG
and Merton models.  The effects of the correlation among the stochastic variables in the
time-dependent model on PDs are also studied.  At the end we will summarise our
investigation.

2. ANALYTICAL MODEL OF PD

A continuous-time framework is used to value PD of a firm in the model.
The firm value V is assumed to follow a lognormal diffusion process.  The firm liability Q
is governed by a mean-reverting lognormal diffusion process.2  The dynamics of the risk-
free interest rate r is drawn from the term structure model of Vasicek (1977), i.e. the
Ornstein-Uhlenbeck process.3  Their continuous stochastic movements are modelled by
the following stochastic differential equations:
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where σQ(t) and σV(t) are the respective volatility values, µQ(t) and µV(t) are the respective
drift rates, and the firm liability Q is mean-reverting at speed κQ(t).  When lnQ is less than
lnV, the firm acts to increase lnQ, and vice-versa.  This means that the firm tends to issue
debt when its leverage ratio falls below a target and reduces its liability when its leverage
ratio is above the target.  Future changes in the liability structures of the firm give
uncertainty to the value of the liability.  There is no other explicit relationship assumed
between the firm value and the way it will impact the value of the liability.  The interest
rate uncertainty is driven by a Vasicek representation with the instantaneous volatility
σr(t).  The short-term interest rate r is mean-reverting to long-run mean θr(t) at speed κr(t).
All model parameters are explicitly time dependent.  The Wiener processes dZQ, dZV ,
and dZr are correlated with

                                                
2 Q can be the market value of the total debts or the present value of the face value of the liabilities.
3 Although this assumed process is consistent with many of the observed properties of interest rates, it can

allow negative interest rates.  However, this assumption may still be justifiable in the context of the
valuation because given that the current value of interest rate and the mean-level are both positive,
the dynamics always imply positive expected future interest rate.
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We define R≡Q/V to be the leverage ratio and apply the Ito’s lemma to derive the partial
differential equation governing a corporate discount bond value P(R,r,t) based on the
model as follows:  (see the Appendix)
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where t is the time-to-maturity,
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Here θR(t) is the time-dependent target leverage ratio, and the terms −λV(t)σV(t) and
−λQ(t)σQ(t) are included to account for the risk premiums of the firm’s value and liability.
Under the risk-neutral measure, δ is equal to zero.  To obtain reasonable parameter values
for the target leverage ratio, the dynamics of Q and V are under the actual measure such
that δ is non-zero.  If the leverage ratio R and its associated model parameters in Eq.(3)
could be directly observed in the market, Eq.(2) is still applicable to the model.

When the firm’s leverage ratio is above a predefined level R0, bankruptcy
occurs before maturity.  This is consistent with the event of bankruptcy being associated
with abnormally high levels of debt relative to the market value of the firm’s assets.
As shown in the Appendix, the corresponding PD, Pdef (x, t), of a corporate discount bond
over a period of time t based on Eq.(2) can be approximated by
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where x=ln(R/R0), N(⋅) is the normalised cumulative distribution function,
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( ) ( )

( ) ( ) ( )[ ] ( ) ( ) ( ) ( ) ( ) ( )[ ]

( ) ( )

( ) ( )[ ] .cdtc

dtc

tctcttttRtttF

dt

t

t

r

rRRrRRQ

t

Q

ξξ

ξξκ

σσρσθκ

ξξκα

3
0

4

0
3

34
2

0

0

exp

exp
2
1lnln

−−=

−=

+−−=

−=

∫

∫

∫

(7)

The parameter β is adjusted such that the approximate solution in Eq.(4) provides the best
approximation to the exact result.  A simple and easy-to-use method that has been
developed by Lo et al.(2003) for solving barrier option values with time-dependent model
parameters is provided for computing accurate PD estimates based on Eq.(4).

3. NUMERICAL RESULTS OF MODEL PD

The computed PDs within a period of 15 years based on Eq.(4) for
corporates with non-investment ratings (i.e. CCC, B, and BB) are presented in Figures 1,
2, and 3 respectively, and those with investment ratings (i.e. AAA, AA, A and BBB) are
presented in Table 1.  The model PDs of different periods of time are compared with the
cumulative default rates of the corresponding ratings and periods of time based on 9,769
companies’ assigned long-term ratings from 1981 to 2001 reported by S&P’s (2002).
The PDs generated from the CG model with a constant θR of 0.315 (i.e. the average
leverage ratio of BBB-rated firms) and the Merton model are also shown in the figures and
Table 1 for comparison.  The predefined default-triggering level is set at R0=1.  The model
parameters used for individual ratings are shown in Table 2.  As σQ of individual ratings is
not well studied empirically in the literature, the use of σQ=0.1 for the calculations is
based on the assumption that the volatility of a firm’s liability structure would generally be
lower than that of its firm value.  If the leverage ratio R and its associated model
parameters in Eq.(4) could be directly observed in the market, it is not necessary to
estimate σQ empirically.  Other common parameters used in the calculations are
σr = 0.03162, κr = 1.0, ρVQ = 0.0, ρVr = 0.0 and ρQr = 0.0.
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We use the simplest, yet non-trivial, scenario about the time-dependence of
the target leverage ratio θR(t), namely a generic linear function of time with no adjustable
parameter as follows:

( ) ( )tt RR ηθθ −= 10 (8)
where θR0 and η are constants such that:

1. in the first year θR ≈ 0.732 (i.e. the average leverage ratio of a corporate of ‘CCC’
rating), and

2. in the fifteenth year θR ≈ 0.315 (i.e. the average leverage ratio of a corporate of
‘BBB’ rating).

The simple linear function of time in Eq.(8) is used to illustrate the effect of
the time-dependence of a target leverage ratio on model PDs.  The use of θR ≈ 0.315 in the
fifteenth year is close to the long-term target leverage ratio observed empirically by
Collin-Dufresne and Goldstein (2001).  The use of the high θR of 0.732 in the first year is
explained by the observation that default occurring at short terms is mainly triggered by a
corporate’s short-term liabilities.  The default (or distressed restructuring of debts)
occurring in the corporate is due to its liquidity problem.  The observation of the liquidity
problem is similar to the phenomenon of high default rates of bonds at short maturities,
that is called “crisis-at-maturity” by Johnson (1965).  This explanation assumes,
as Johnson points out, that corporates are unable to accumulate cash for debt repayment
before maturity.  The material one- to three-year default rates reported by S&P’s reflect the
liquidity problem faced by the defaulted corporates in S&P’s data pool.  The potential
liquidity problem faced by corporates may cause their firm values to decline.
The corporates may need to issue debts to repay their short-term obligations.  The effect
forces the corporates (including those corporates having low current leverage ratios) to
observe high short-term target leverage ratios.

The term structures of PDs for the CCC rating based on the three models,
i.e. the time-dependent model, CG model and Merton model, exhibit upward slopes at
short tenors in Figure 1.  At longer tenors, their shapes are flat.  Intuitively, this is because
the probability that the firm’s leverage ratio reaches the default barrier increases over time.
The flattened slopes at longer tenors however reflect that PDs of CCC-rated corporates
will not increase significantly over time as the corporates survive at shorter terms.
The shapes of the model term structures of PDs are consistent with S&P’s default rates of
CCC-rated corporates.  Figure 1 shows that the PDs obtained from the time-dependent
model and CG model are both higher than the PDs obtained from the Merton model which
only considers default at maturity.  In addition, the PDs based on the time-dependent
model are higher than those obtained from the CG model and broadly match with the
default rates reported by S&P’s.  The results demonstrate that the use of the high initial
target leverage ratio of θR = 0.732, which gradually decreases to θR = 0.315 with time,
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can generate the model PDs which are more consistent with the empirical observed PDs
than the PDs obtained from the CG and Merton models.  In other words, the phenomenon
of “crisis-at-maturity” that is presented by the high initial target leverage ratio could be a
factor to explain the term structures of empirical default rates.

The term structures of PDs for the B rating are illustrated in Figure 2 using
the three models.  The depicted term structures exhibit upward slopes at short tenors.
At longer tenors, their shapes display different degrees of upward-sloping depending on
the models.  The shape and values of the term structure based on the time-dependent
model match with the empirical default rates reported by S&P’s while the model values
are higher than the empirical values at tenors of longer than four years.  The values of the
term structures generated from the other two models are close to each other but are much
lower than the empirical values at all tenors.  Similar to Figure 1, Figure 2 also shows that
the use of the time-dependent target leverage ratio with linear time decay can generate the
model PDs which are consistent with the empirical default rates.

Figure 3 shows the term structures of PDs for the BB rating.  The depicted
term structures based on the time-dependent model exhibit upward slopes.  The shape is
consistent with the empirical findings of the term structure of the BB rating reported by
S&P’s, while the model term structure gives higher values of PDs in particular at tenors of
longer than three years.  The difference in the values increases with the tenors.  The results
indicate that the time-dependent target leverage ratio could be too high at longer tenors
and gives higher model PDs than the empirical default rates.  Conversely, the CG and
Merton models present much lower PDs than the empirical default rates at all tenors,
where the PDs given by the CG model are lower than those given by the Merton model.
The constant target leverage ratio of θR = 0.315 used in the CG model could reduce the
default risk as it is lower than the current leverage ratio of R = 0.495 used for the BB
rating.

As shown in the above numerical results, even though there are
discrepancies between the model PDs and S&P’s data, yet the time-dependent model can
qualitatively capture the major features of the historical default rates.  The results support
the hypothesis of the existence of time-dependent target leverage ratios in firms with non-
investment ratings.  Furthermore, to examine the possibility of different time-dependent
target leverage ratios for different ratings, we use a family of time-dependent ratios
parameterised by a single parameter γ and try to determine the values of γ for different
ratings by fitting the historical default rates with the model PDs.  The time-dependent
target leverage ratio θR(t) is assumed to be parameterised in the following exponential
form:

( ) ( )[ ]tt RR γηθθ −+= exp10 (9)

where θR0, η and γ are constants determined by fitting the numerical estimates with the
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average default rates reported by S&P’s.  The conditions of θR(t = 1) ≈ 0.732 and θR(t =
15) ≈ 0.315 will enable us to express θR0 and η as functions of γ.  In other words, we are
left with the parameter γ only.  In our search for optimal values of γ such that model PDs
fit the empirical values, we find that γ = −0.23, −0.1 and −0.15 for ratings of CCC, B and
BB respectively.  Using these values of γ, the decrease in the target leverage ratio with
time is faster than that based on the linear function.  In Figure 4, the model PDs generated
from the exponential time-dependent function of the target leverage ratio match more
closely with the empirical values at all tenors, than the model PDs presented in Figures 1,
2, and 3.  The results also provide evidence to support the hypothesis of the existence of a
time-dependent target leverage ratio.  As the values of γ are found to be different for
different ratings, firms with different credit quality may have different paces to move their
initial target ratios toward the long-term target ratio over time.  However, it is beyond the
scope of this paper to investigate the actual time dependence of different firms’ target
leverage ratios.

In Table 1, the PDs generated by the time-dependent model based on the
exponential function of θR(t) for investment ratings are comparable to S&P’s default rates,
while those based on the linear function do not match well with the empirical values.
The values of the term structure of the BBB rating generated by the time-dependent model
with the exponential function of θR(t) broadly match with the empirical default rates
reported by S&P’s.  The percentage differences between the model PDs and empirical
default rates for investment ratings (in particular for AAA and AA ratings at short tenors)
are larger than those for non-investment ratings.  The first reason is that the observations
of default events occurred in investment grade firms are rare, in particular at short tenors
(e.g. only 14 defaults occurred in companies with original rating of AA in S&P’s data and
the average time to default is 11.9 years).  A very few default events occurred in AA-rated
firms may cause significant changes of the observed default rates.  On the other hand,
there are 574 defaults occurred in firms with the original rating of B in S&P’s data and the
average time to default is only 3.8 years.  The second reason is that the problem of
downward-biased default risk at short tenors is common to all contingent-claims pricing
models which assume continuous dynamics.  Therefore, criticism of the model based on
low PDs at short tenors is that of the underlying assumptions.  Regarding PDs generated
by the CG and Merton models, the prediction by these two models that PDs are close to
zero at all tenors for the AAA, AA and A ratings contradicts the findings of S&P’s (2002).

We use the BB rating to illustrate the effect of the correlation ρVQ, ρVr and
ρQr on model PDs in Figures 5, 6, and 7 respectively.  The movement of the target leverage
ratio follows the linear function in Eq.(8).  In Figure 5, ρVQ = −0.75, 0, 0.3 and 0.75 are
used to generate the term structures of PDs.  The values of PDs increase with the
decrease in ρVQ and are sensitive to ρVQ.  This is due to the reason that the opposite
movement of V and Q caused by negative correlation would further increase the leverage
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ratio of the firm (when V decreases or Q increases) so as to increase the default risk.
Conversely, when Q and V are positively correlated, the expected leverage ratio would be
more stable over time and thus the default risk is reduced.  Figure 5 also illustrates that
different ρVQ can produce quite diverse shapes of the term structures.  The use of ρVQ = 0.3
generates the term structure which matches the S&P’s data better than that generated by
the use of ρVQ = 0.  This implies that firms may generally intend to maintain positive
correlation between its firm asset and liability.  This can be explained by the intuition that
a firm tends to borrow more money for expanding its business when its firm value
increases.  When its firm value drops, it tends to reduce its debt and also its expenses.
As a result, correlation between the firm’s asset and liability values is positive.

Figures 6 and 7 show that the impact of the correlation arising from r,
in particular the impact from ρQr, on PDs is not as significant as that from ρVQ.
The impact only becomes apparent at longer tenors.  It is observed in Figure 6 that PDs
decrease with the decrease in ρVr.  The reason is that PDs would increase due to the
decrease in the drift r of the asset value V.  As negative ρVr implies that a decrease in r
would relate to an increase in V, this provides a natural hedge against default risk.
This observation is also consistent with the intuition that a decrease in r would typically be
associated with an increase in V and PDs may thus decrease.  Conversely, Figure 7 shows
that PDs increase with a decrease in ρQr.  As PDs would increase due to the increase in the
drift r of the liability Q, negative ρQr reinforces this effect and increases the default risk.
This observation is consistent with the intuition that a low interest rate environment would
encourage firms to increase their debts because of low interest rate costs involved and the
firms’ PDs would thus increase.

In summary, the numerical results show that the stationary-leverage-ratio
model incorporating a time-dependent target leverage ratio gives the basic shapes and
values of the term structures of PDs for different credit ratings, in particular for ratings of
BBB and below, which broadly match with some empirical findings.  On the other hand,
the PDs obtained from the CG and Merton models are much lower than the
empirical values.  The numerical results provide some evidences of the existence of a
time-dependent target leverage ratio.

4. CONCLUSION

This paper extends the stationary-leverage-ratio model to incorporate a
time-dependent target leverage ratio.  The numerical results show that the model
incorporating a time-dependent target leverage ratio is capable of producing term
structures of PDs which are consistent with some empirical findings.  The results provide
evidence to support the hypothesis of the existence of a time-dependent target leverage
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ratio.  The hypothesis reflects the movement of a firm’s initial target ratio toward a long-
term target ratio over time.  As the scenarios about the time-dependence of target leverage
ratios used in this paper are simply for illustrative purposes, more detailed empirical
examination on the actual time dependence of target leverage ratios and comparison
between the empirical default rates and model PDs are left to future research.  The results
of the predictions of probabilities of default also support that the time-dependent model
can be used for credit risk measurement of corporate exposures for the New Basel Capital
Adequacy Standards purposes.
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Appendix

Applying the Ito’s lemma and the standard risk-neutral argument, the price
P of a corporate bond with stochastic interest rate and liability, which is a function of the
firm value V, the liability Q of the firm, the short-term interest rate r and the time to
maturity t is governed by the partial differential equation
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where the terms −λV(t)σV(t) and −λQ(t)σQ(t) are included to account for the risk premiums
of the firm’s value and liability.  To solve this partial differential equation, we first rewrite
it in terms of the variables x1=ln(Q/Q0)−ln(V/V0) and x2=ln(Q/Q0)+ln(V/V0), where Q0 and
V0 are constants, as follows:
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Since P(x1,x2,r,0) is independent of r and x2, it is not difficult to show that

P(x1,x2,r,t) actually does not depend upon x2 and thus Eq.(A.2) is reduced to
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whose solution has the form

( ) ( ) ( ) ,t,xFt,rBt,r,xP 11 = (A.5)

where F(x1, t) satisfies the partial differential equation
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and ( ) ( ) ( ) ( ) ( )[ ] ( ) ( )[ ]{ }rtAtAtAtAtAtAt,rB 434
2
321 exp2expexp ++=  is simply the risk-free bond

function fo the Vasicek model with explicitly time-dependent parameters.  Here the
parameters γ(t) and An’s are defined as follows:
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It should be noted that defining
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we can straightforwardly derive Eq.(2) from Eq.(A.4).  Obviously, Eq.(A.6) can be easily

solved to yield
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The kernel G(x1, t; x′1, 0) is given by
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Furthermore, we can apply the method of images to incorporate an

absorbing boundary, i.e. the leverage ratio upon default, along the x1−axis with a drifted

dynamics of the form ( ) ( ) ( )tctctx 121 4β−−≡∗  into our model, where the parameter β is a real

adjustable parameter controlling the movement of the leverage ratio upon default.  The

corresponding solution ( )t,xP~ 1  is given by
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where

( ) ( ) ( ) ( ).x,x;t,xG,x;t,xG,x;t,xK 1111111 4exp000 ′−′−−′=′ β (A.15)

Then, in terms of the kernel K(x1, t; x′1, 0), we can also derive the probability of default

over a period of time t as follows:
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